High Power Mindsets Reduce Gender Identification and Benevolent Sexism Among Women (But Not Men)☆

Andrea C. Vial a,⁎, Jaime L. Napier b

a Department of Psychology, Yale University, United States
b Department of Psychology, New York University Abu Dhabi, United Arab Emirates

A R T I C L E I N F O
Article history:
Received 22 April 2016
Revised 29 June 2016
Accepted 30 June 2016
Available online 03 July 2016

Keywords:
Gender
Power
Gender identification
Benevolent sexism

A B S T R A C T
We examine how feelings of power affect gender identification and the endorsement of sexism. Participants wrote essays about a time when they felt powerful or powerless (Studies 1–2) or about an event unrelated to power (Studies 2–3). Then, they reported how much they identified with their gender group. When primed with high power, women reported lower levels of gender identification, as compared to those primed with low power (Studies 1–2) and to a control condition (Studies 2–3). In Study 3, we also found that women primed with high power endorsed benevolent (but not hostile) sexism less than women in both the low power and control conditions. Power had no impact on men’s gender identification or sexism.

© 2016 Elsevier Inc. All rights reserved.

Upon becoming the first female CEO of Hewlett-Packard in 1999, Carly Fiorina flatly declared, “I hope we’re at a point that everyone has figured out that there is no glass ceiling” (Markoff, 1999). Years later, when an interviewer asked her about that now (ina)famous declaration, Fiorina explained, “Looking back on that … I was truly stunned and completely unprepared for the amount of attention that was paid to my gender… because I had so long ago stopped thinking about myself as a woman in business, and thought about myself as a businessperson who happened to be a woman” (Hewlett-Packard Development Company, L.P., 2003).

With women so highly underrepresented in powerful roles (Catalyst, 2014), it seems surprising that one of the very few women who managed to make it to the top could be so detached from the difficulties facing women as a group. However, research suggests that this is not an anecdotal case. That is, members of disadvantaged groups who experience individual mobility seem to dissociate themselves with their ingroup in various ways (e.g., Derks, Ellemers, van Laar & de Groot, 2011; Kulich, Lorenzi-Cioldi, & Iacoviello, 2015). Here, we test one potential explanation for this phenomenon, namely that the psychological experience of feeling powerful might lead members of historically disadvantaged groups to dis-identify with their group.

A large literature has demonstrated that the psychological experience of holding (or lacking) power affects a plethora of outcomes (e.g., Galinsky, Rucker, & Magee, 2015). In an effort to integrate the myriad effects of power in a single model, Rucker, Galinsky, and DuBois (2012) highlighted how the effects of high (vs. low) power appear to correspond to shifts in a self (vs. other) focus. More specifically, power produces an agentic orientation, where attention is primarily directed toward the self, whereas powerlessness produces a more communal orientation, amplifying sensitivity to bonding with, and considering the concerns of, the group (Blader & Chen, 2012; Dubois, Rucker, & Galinsky, 2015; Rucker, Dubois, & Galinsky, 2011). Consistent with this increased communality, low power individuals exhibit more group-cohesion promoting behaviors than high power individuals—for instance, they tend to be better at perspective taking (Galinsky, Magee, Inesi, & Gruenfeld, 2006) and experience greater emotional distress and compassion in response to the distress of another (van Kleef et al., 2008). In contrast, feeling powerful leads to lower needs to belong and, as a result, reduced self-reports of loneliness (Waytz, Chou, Magee, & Galinsky, 2015). Moreover, high (vs. low) power primes lead to independent (vs. interdependent) self-construal (Caza, Tiedens, & Lee, 2011; see also Kraus, Chen, & Kelten, 2011) and increased social distance (Lammers, Galinsky, Gordijn, & Otten, 2012; Lee & Tiedens, 2001; Magee & Smith, 2013; Smith & Trope, 2006).

Conceiving of power in terms of shifts in agentic versus communal orientations leads to a consequential prediction about how an experience with power might affect individuals’ connection to their ingroup, especially for members of disadvantaged groups. Specifically, if the psychological experience of holding power fosters a sense of self-reliance and independence (Fast, Gruenfeld, Sivanathan, & Galinsky, 2009;
Rucker et al., 2011), it follows that power might reduce people’s efforts to derive a sense of belongingness (e.g., Waytz et al., 2015). In the case of members of relatively disadvantaged groups, who rely on their group identification to maintain a sense of belongingness in spite of exclusion from the dominant group, this reduced need to belong could mean that power might lower group identification.

By “identification,” we refer to the degree to which an individuals’ self-definition includes membership in a social category (e.g., “being a man/woman is an important part of my self-image”; Wood & Eagly, 2015). Group identification tends to be higher among members of socially devalued, subordinate groups (such as women and racial or sexual minorities) as compared to members of socially valued, dominant groups (Burn, Aboud, & Moyles, 2000; Cadinu & Galdi, 2012; Cameron & Lalone, 2001; Hurtig & Pichevin, 1990; Latrofa, Vaes, Cadinu, & Carnaghi, 2010; Lorenzi-Cioldi, 1991). Such disparity exists because identifying with a (subordinate) group can foster a sense of belongingness in the face of exclusion by the dominant group (Branscombe, Schmitt, & Harvey, 1999; Jetten, Branscombe, Schmitt, & Spears, 2001). Thus, for members of subordinate groups, a strong collective identity is an alternative to the superordinate group. It serves as a buffer against the otherwise negative effects of experiencing discrimination and subjugation, and lays the foundation for efforts toward group advancement (Ramos, Cassidy, Reicher, & Haslam, 2011). Historically dominant groups (e.g., men, White Americans), by contrast, are perceived as a sort of societal “default,” and thus group membership is typically not a salient (Gurin, 1985) or distinct (Breuer, 1991; Devos & Banaji, 2005) social category.

Myriad studies have established that group identification is psychologically important and behaviorally consequential for members of low status groups (Becker, Tausch, Spears, & Christ, 2011; Branscombe et al., 1999; Crocker & Major, 1989; Derks, Ellemers, et al., 2011; Doosje, Spears, & Ellemers, 2002; Ellemers, 2001; Ellemers, van den Heuvel, Gilder, Maass, & Bonvini, 2004; Klandermans, 2002; Kulich et al., 2015; Major, Quinton, & McCoy, 2002; Schmitt & Branscombe, 2001). For example, high group identification predicts support for collective action on behalf of the group (Becker et al., 2011; Klandermans, 2002). Past investigations have focused on identification as an individual difference variable that moderates people’s responses to social identity threats (e.g., Spears, Doosje, & Ellemers, 1997). For instance, research on the “Queen Bee” phenomenon has shown that low (but not high) identified women who hold positions in male-dominated fields respond to identity threats by distancing themselves from their gender group (Derks, van Laar, Ellemers, & De Groot, 2011; Kaiser & Spalding, 2015). Recent work has shown that this phenomenon occurs for other subordinate groups as well (e.g., Hindustani workers in the Netherlands; Derks, van Laar, Ellemers, & Raghoe, 2015).

However, surprisingly little experimental work has examined whether factors might influence group identification. The very few exceptions are broadly (albeit indirectly) consistent with the proposition that power might cause a reduction in identification among members of disadvantaged (but not advantaged) groups. For instance, studies have shown that ingroup identification is lower (1) when members of a minority group are told that their group is liked and treated fairly (vs. disliked and discriminated against) by others (Jetten et al., 2001, Study 2); and (2) when members of an experimentally-created low (but not high) status group are led to believe it is possible (vs. not possible) to transfer to a higher status group (Ellemers, van Knippenberg, De Vries, & Wilke, 1988; Ellemers, van Knippenberg, & Wilke, 1990). These studies focused on how group identification is impacted by intergroup dynamics (i.e., intergroup bias and mobility). Here, we investigate a different antecedent, namely, how individuals’ own sense of power affects identification with disadvantaged groups. As feeling powerful has been shown to increase feelings of independence (vs. interdependence), reducing people’s need for connection and solidarity (Fast et al., 2009; Rucker et al., 2011), we expect that priming members of subordinate groups with power will reduce their identification with their group. We examine this possibility within the context of gender. Across three experiments, we test the hypothesis that women (but not men) who are made to feel powerful will report lower gender identification compared to those who feel powerless (Studies 1–2) and those in a control condition (Studies 2–3). Across studies, we report all measures, manipulations, and exclusions.

In Study 3, we also examine whether power affects people’s conceptions of gender relations (i.e., hostile and benevolent sexism). As people primed with high (vs. low) power have been found to engage in system justification to a lesser extent (van der Toorn et al., 2015), and benevolent sexism in particular functions to legitimate unequal gender relations (Glick & Fiske, 1996), we expected that women primed with high (vs. low) power would be less likely to endorse benevolent sexism.

1. Study 1

The goal of this study was to test the prediction that inducing feelings of high (vs. low) power would lead to lower levels of gender identification among female (but not male) participants.

2. Method

2.1. Participants

One hundred and ninety four individuals living in the United States completed this study online on Amazon’s Mechanical Turk (53.1% women; mean age = 32.32, SD = 11.44). We aimed to enroll 100 participants per power condition (i.e., 200 total), and results were not examined until all data had been collected. No cases were excluded. The survey took 15 min to complete, and participants received 55 cents for their time. Most participants identified as White (77.8%) and heterosexual (85.1%).

2.2. Procedure and materials

As part of a larger study (see Supplementary materials), participants were randomly assigned to either a high or low power episodic prime (Galinsky, Gruenfeld, & Magee, 2003), in which they were asked to write about a particular incident in their lives when they either had power over another person (or persons) or when someone had power over them. There were 43 men and 48 women in the low power condition, and 48 men and 55 women in the high power condition. As a manipulation check, participants were asked to indicate, on a 7-point scale, how much the situation they described made them feel: in-control, powerful, independent, dominant, in-charge, and weak, presented randomly among filler items (e.g., Guinote, 2007; See, Morrison, Rothman, & Soll, 2011). After reverse-coding the last item, an average power score was computed ($\alpha = 0.94$). We then assessed gender identification with four items used in prior research (Becker & Barreto, 2014; Becker & Wagner, 2009; Eliezer, Major, & Mendes, 2010; Kiefer & Sekaquaptewa, 2007; Schmader, 2002) e.g., “Being a woman [man] is an important part of my self-image.”. Items were rated on a 1 (strongly disagree) to 6 (strongly agree) scale ($\alpha = 0.90$). Participants indicated their gender immediately prior to the gender identification scale, and their selected gender was then piped into the statements. Basic demographic questions (age, race/ethnicity, sexual orientation) and debriefing followed.

3. Results

3.1. Manipulation check

As expected, those in the high power condition felt significantly more powerful ($M = 5.02, SD = 1.13$) than those in the low power condition ($M = 2.14, SD = 0.93$), $F(1,190) = 368.94, p < 0.001, \eta^2_g = 0.660$. Women reported feeling slightly (but not significantly) less powerful
than men, $F(1190) = 2.65, p = 0.10, \eta^2_p = 0.014$, but this was true across conditions, as evidenced by the absence of a gender-by-condition interaction, $F(1190) = 0.96, p = 0.33, \eta^2_p = 0.005$.

3.2. Gender identification

A 2 × 2 factorial Analysis of Variance (ANOVA) predicting gender identification with participant gender (male vs. female) and experimental condition (high vs. low power) revealed no main effects of gender, $F(1190) = 1.84, p = 0.17, \eta^2_p = 0.010$, or condition, $F(1190) = 1.63, p = 0.20, \eta^2_p = 0.009$, but the predicted significant interaction emerged, $F(2190) = 5.28, p = 0.023, \eta^2_p = 0.027$ (see Fig. 1). For men, identification did not differ between high power ($M = 4.32, SD = 1.03$) and low power ($M = 4.15, SD = 1.21$), $F(1190) = 0.49, p = 0.48, \eta^2_p = 0.003, 95\% CI [-0.677, 0.322]$. But, as expected, among women, gender identification was significantly lower among those made to feel high power ($M = 4.16, SD = 1.27$) versus low power ($M = 4.78, SD = 1.30$), $F(1190) = 6.81, p = 0.010, \eta^2_p = 0.035, 95\% CI [0.152, 1.092]$.

Looking at it the other way, between-gender comparisons revealed that, when primed with low power, women reported significantly higher gender identification than men, $p = 0.013, \eta^2_p = 0.032, 95\% CI [0.136, 1.136]$, as is typically the case (Cameron & Lalonde, 2001; Hurtig & Pichevin, 1990; Lorenzi-Cioldi, 1991). This difference was no longer reliable in the high power condition, $p = 0.49, \eta^2_p = 0.002, 95\% CI [-0.634, 0.306]$.

4. Discussion

As predicted, women in the high (vs. low) power condition reported lower levels of gender identification, whereas the same was not true of men. This finding is in line with past work showing that power shifts people's focus toward the self versus the group (Rucker et al., 2012). Additionally, although the main effect of participant gender on identification was not significant, the overall pattern of means showed that women had higher identification than men did, consistent with past findings (Cameron & Lalonde, 2001; Hurtig & Pichevin, 1990; Lorenzi-Cioldi, 1991). Comparisons between men and women showed the expected identification difference in the low power condition, with women reporting significantly higher identification than men. In contrast, women and men in the high power condition had similar identification levels, consistent with our overall predictions that high power would lower women's identification with their gender group, but not men's. However, because we did not include a control condition in this study, the direction of the effect is unclear. Does high power reduce women's gender identification, or does low power increase it? This question was addressed in Study 2.

5. Study 2

The aims of this study were to replicate the effect of power on women's gender identification, this time in the laboratory, and with the inclusion of a control condition so that we could discern the direction of this effect. We predicted that women primed with high power would report lower gender identification compared to those primed with low power and to those in a control condition. In this study, we also explored whether power might influence gender identification at the implicit level. Due to the limited size of the (predominantly female) participant pool, we restricted participation to women.

6. Method

6.1. Participants

One hundred women participated in this study (mean age = 20.31 years, SD = 4.46). Eighty-nine were undergraduates who participated for course credit, and 11 were volunteers who received $5 for their participation. The study was conducted over the course of the academic year, and the sample size reflects the maximum number of participants we were able to recruit during that time. Focal hypotheses were not tested until data collection was finalized. No cases were excluded. The plurality of participants identified as White (53%); most were heterosexual (91%).

6.2. Procedures and materials

As part of a larger study (see Supplementary materials), participants were randomly assigned to one of three conditions: high power or low power, using the same essay prompts as in Study 1 (Galinsky et al., 2003), or a control condition in which participants wrote about an event unrelated to power (i.e., their morning routine; see Fast et al., 2009; Gruenfeld, Inesi, Magee & Galinsky, 2008). There were 39 women in the low power condition, 27 in control, and 34 in the high power condition. After the manipulation, participants completed the same measure of gender identification from Study 1 ($\alpha = 0.90$). An Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) was later used to measure gender identification at the implicit level (Cadinu & Galdi, 2012). Details about this IAT can be found in the supplementary materials. At the end of the study, participants rated the same manipulation check items as in Study 1 ($\alpha = 0.90$). Due to a technical problem, only 84% of participants completed this manipulation check, but this issue affected all three experimental conditions equally. Demographic questions (age, race/ethnicity, sexual orientation) and debriefing followed.

7. Results

7.1. Manipulation check

As expected, there was a significant effect of condition on self-reported feelings of power, $F(2,81) = 963.19, p < 0.001, \eta^2_p = 0.922$: Participants in the high power condition felt significantly more powerful ($M = 4.95, SD = 1.23$) than participants in the control condition ($M = 4.28, SD = 1.05$), $p = 0.047$, and participants in the low power condition felt significantly less powerful ($M = 2.90, SD = 1.21$) than those in both other conditions, $p < 0.001$.

1 There were no reliable differences in gender identification scores between participants who received credit ($M = 4.89, SD = 1.01$) and monetary compensation ($M = 4.59, SD = 1.50$), $F(1,98) = 0.798, p = 0.37$.

Fig. 1. Gender identification (measured on a 1-to-6 scale) as a function of power condition and participant gender (Study 1). Error bars represent the standard error of the mean.
7.2. Gender identification

As predicted, a one-way ANOVA with experimental condition (high power vs. control vs. low power) revealed a main effect on gender identification, $F(2,97) = 4.96, p = 0.009, \eta^2_p = 0.093$. Planned comparisons revealed that women reported lower gender identification in the high power condition ($M = 4.43, SD = 1.48$) compared to the other conditions, $p = 0.005$, whereas there was no difference between low power ($M = 5.19, SD = 0.69$) and control ($M = 4.94, SD = 0.67$), $p = 0.33$ (see Fig. 2). Post-hoc tests comparing all conditions showed that gender identification in the high power condition was significantly lower compared to the low power condition, $p = 0.002, 95\% CI [−1.231, −0.273]$, and marginally lower compared to the control condition, $p = 0.061, 95\% CI [−1.027, 0.024]$.

7.3. Gender identification at the implicit level (IAT)

A one-way ANOVA with experimental condition (high power vs. control vs. low power) on IAT D scores (Greenwald, Nosek, & Banaji, 2003) revealed no significant main effect of condition, $F(2,97) = 0.71, p = 0.49, \eta^2_p = 0.014$. The strength of self-female associations were no different in the high power ($M = −0.57, SE = 0.06$), low power ($M = −0.66, SE = 0.05$), and control conditions ($M = −0.58, SE = 0.07$).

8. Discussion

Study 2 replicated the finding from Study 1, showing that women primed with high power reported significantly lower gender identification scores than women in the low power condition. This effect was stronger in Study 2 compared to Study 1 ($\eta^2_p = 0.093$ vs. $\eta^2_p = 0.035$), likely due to a more homogenous sample and tighter experimental control facilitated by the laboratory setting. Moreover, the inclusion of a control condition in this study allowed us insight into the direction of the effect—there was no difference in gender identification between those in the low power versus control conditions, supporting our interpretation of Study 1 findings that feeling powerful reduced ingroup identification, but feeling powerless did not increase it. Study 2 included female participants only; in order to get a more complete picture of this effect, we again compared high to low power as well as a control condition in Study 3, this time including both men and women. In Study 2, power had no effect on gender identification at the implicit level, a result we return to in the general discussion.

9. Study 3

In this final study, we aimed to replicate the effect of power on gender identification from Studies 1–2, and we also examined the effects of power on the perceived legitimacy of the traditional gender system. Previous work has shown that participants primed with low (vs. high) power report higher levels of system justification (van der Toorn et al., 2015), because dependency on the system increases people's need to imbue existing hierarchies with legitimacy. Although this prior work focused on how low power leads to more system justification, the same logic would suggest that high power would reduce system justification, especially among women who are arguably chronically primed with some level of dependency, at least when it comes to gender relations.

To examine this possibility, we included measures of ideologies that serve to legitimate unequal gender relations, namely the endorsement of hostile and benevolent sexism (Glick & Fiske, 1996). “Hostile sexism” is traditional misogyny, portraying women as incompetent, emotionally unstable, and sexually manipulative, whereas “benevolent sexism” is a romanticized notion of women as innocent and pure, but weak (and thus in need of male protection). Both ideologies serve to maintain women’s low status relative to men, but the seemingly positive tone of benevolent sexism provides an incentive for women to accept the comforts and tradeoffs of paternalism (Cikara, Lee, Fiske, & Glick, 2009; Napier, Thorsildt, & Jost, 2010; Sibley & Overall, 2011). We thought that women primed with high (vs. low) power would be less likely to be seduced by this flattering (but oppressive) view of gender relations, and expected them to endorse benevolent sexism to a lower extent. We thought it would be unlikely that power would affect women’s endorsement of hostile sexism, which tends to be less prevalent in Western countries, especially among women, presumably because it is difficult to endorse without transgressing on other egalitarian values (Napier et al., 2010).

We were agnostic about how power would affect sexism among men. On the one hand, feeling powerful might reinforce men’s stereotypical role as a protector and provider, leading to increased support for traditional gender relations. On the other hand, it is conceivable that low (rather than high) power might increase sexism among men, at least insofar as low power might act as a threat to men's sense of masculinity (Vandello & Bosson, 2013) and thus could cause a surge in support for a traditional gender system (Dahl, Vescio, & Weaver, 2015; Weaver & Vescio, 2015).

10. Method

10.1. Participants

Four hundred and fifty four individuals living in the United States completed this study online on Amazon’s Mechanical Turk (48.9% women; mean age = 32.09, SD = 11.45). We aimed to enroll at least 150 participants per power condition (i.e., 450 total), and data collection was fully completed before results were examined. No cases were excluded. The survey took 15 min, and participants received 76 cents for their time. Most participants identified as White (75.8%) and heterosexual (87.4%).

10.2. Procedure and materials

As in Study 2, participants were first randomly assigned to one of three essay conditions (high power, low power, or control; Galinsky et al., 2003). In the control condition, participants recalled and wrote about the last time they had been to the movies (see Fast et al., 2009; Gruenfeld, Inesi, Magee, & Galinsky, 2008). There were 82 men and 58 women in the low power condition, 74 men and 90 women in control, and 76 men and 74 women in the high power condition. After the manipulation, participants completed the same measure of gender identification employed in the previous two studies ($\alpha = 0.87$). Finally, participants completed the 22-item Ambivalent Sexism Inventory (Glick & Fiske, 1996) which measures hostile ($\alpha = 0.92$) and benevolent sexism ($\alpha = 0.87$). Responses were reported on a scale from 1 (strongly disagree) to 6 (strongly agree). Sample items include,

![Fig. 2. Gender identification (measured on a 1-to-6 scale) as a function of power condition among women (Study 2). Error bars represent the standard error of the mean.](image-url)
Women are too easily offended’ (hostile sexism), and ‘Women should be cherished and protected by men’ (benevolent sexism). At the end of the study, participants rated the same manipulation check items used in Studies 1–2, $\alpha = 0.91$. Demographics (age, race/ethnicity, sexual orientation) and debriefing followed. (See supplementary materials for additional measures and analyses.)

11. Results

11.1. Manipulation check

As expected, there was a significant effect of condition on feelings of power, $F(2448) = 223.38, p < 0.001, r^2_p = 0.499$. Participants in the high power condition felt significantly more powerful ($M = 5.23, SD = 1.19$) than participants in the control condition ($M = 3.70, SD = 1.31$), $p < 0.001$, and participants in the low power condition felt significantly less powerful ($M = 2.24, SD = 1.11$) than those in the control condition, $p < 0.001$. There was a significant effect for gender such that men ($M = 3.87, SD = 1.71$) reported feeling more powerful than women ($M = 3.64, SD = 1.68$), $F(1448) = 10.54, p = 0.001, r^2_p = 0.023$, but this was true across conditions, i.e., there was no significant interaction $F(2448) = 0.80, p = 0.45, r^2_p = 0.004$.

11.2. Gender identification

A 2×3 factorial ANOVA predicting gender identification with gender (male vs. female) and experimental condition (high power vs. control vs. low power) revealed no main effect of condition, $F(2448) = 0.40, p = 0.67, r^2_p = 0.002$. There was a main effect of gender, $F(1448) = 5.83, p = 0.016, r^2_p = 0.013$, such that women ($M = 4.73, SD = 1.07$) reported higher levels of gender identification than men ($M = 4.46, SD = 1.12$). This main effect was qualified by the expected significant interaction with condition, $F(2448) = 3.20, p = 0.042, r^2_p = 0.014$ (see Fig. 3). Among men, gender identification was unaffected by condition, $F(2448) = 1.14, p = 0.32, r^2_p = 0.005$, with similar identification among those in high power ($M = 4.62, SD = 1.01$) and low power ($M = 4.38, SD = 1.11$), $M_D = 0.23, SE = 0.17, p = 0.18, 95\% CI [−0.108, 0.576];$ between those in high power and control conditions ($M = 4.39, SD = 1.24$), $M_D = 0.23, SE = 0.18, p = 0.20, 95\% CI [−0.124, 0.577];$ or between control and low power, $M_D = 0.01, SE = 0.17, p = 0.96, 95\% CI [−0.337, 0.352]$. Among women, however, power had a marginally significant effect, $F(2, 448) = 2.61, p = 0.075, r^2_p = 0.012$. Consistent with predictions, gender identification in the high power condition ($M = 4.52, SD = 1.17$) was significantly lower compared to the control condition ($M = 4.91, SD = 1.03$), $M_D = −0.39, SE = 0.17, p = 0.023, 95\% CI [−0.727, −0.053]$. Unexpectedly, the high versus low power conditions did not significantly differ in this study, $M_D = −0.18, SE = 0.19, p = 0.34, 95\% CI [−0.193, 0.560]$. However, gender identification in the low power ($M = 4.71, SD = 0.97$) and control conditions did not reliably differ, $M_D = 0.21, SE = 0.18, p = 0.26, 95\% CI [−0.155, 0.569]$, and a planned contrast testing the a priori prediction that high power would reduce gender identification compared to the other two groups combined was significant, $M_D = 0.31, SE = 0.16, p = 0.047$.

Looking at it another way, between-gender comparisons revealed that, in the control condition, men were less identified with their gender group than women, $M_D = −0.52, SE = 0.17, p = 0.002, r^2_p = 0.020, 95\% CI [0.185, 0.859],$ a pattern that persisted (albeit marginally) in the low power condition, $M_D = −0.32, SE = 0.19, p = 0.086, r^2_p = 0.007, 95\% CI [−0.046, 0.691].$ In the high power condition, however, women reported the same level of gender identification as men, $M_D = 0.095, SE = 0.18, p = 0.60, r^2_p = 0.001, 95\% CI [−0.256, 0.446].$

11.3. Benevolent and hostile sexism

We conducted two separate 2×3 factorial Analysis of Covariances (ANCOVAs) with participant gender and experimental condition (high power vs. control vs. low power) as independent factors, and benevolent or hostile sexism scores as dependent variables. Following previous recommendations (Glick & Fiske, 1996), we adjusted for hostile sexism when using benevolent sexism as dependent outcome (and vice versa), as benevolent and hostile sexism tend to correlate positively. This positive correlation emerged in our sample, $r(451) = 0.40, p < 0.001$, but the pattern and significance levels of results did not change when the covariates were omitted. Across participants and conditions, gender identification was positively associated with benevolent sexism, $r(451) = 0.26, p < 0.001$, and hostile sexism, $r(451) = 0.10, p = 0.032$.

For hostile sexism (adjusting for benevolent sexism), only gender was a significant predictor, $F(1446) = 46.24, p < 0.001, r^2_p = 0.094$, such that women ($M = 2.70, SD = 1.04$) were less likely to endorse hostile sexism than men ($M = 3.43, SD = 1.10$). Hostile sexism was not significantly affected by condition $F(1446) = 1.26, p = 0.28, r^2_p = 0.006$, nor by its interaction with gender $F(2446) = 0.413, p = 0.66, r^2_p = 0.002$. For benevolent sexism (adjusting for hostile sexism), there were no significant main effects of participant gender, $F(1446) = 0.09, p = 0.76, r^2_p = 0.001$, or condition, $F(1446) = 0.76, p = 0.47, r^2_p = 0.003$. However, the predicted significant interaction emerged, $F(2446) = 5.42, p = 0.005, r^2_p = 0.024$ (see Fig. 4).

Among women, as expected, experimental condition impacted benevolent sexism scores, $F(2446) = 4.23, p = 0.015, r^2_p = 0.019$, such that benevolent sexism was significantly lower in high power ($M = 2.88, SD = 0.94$) versus control condition ($M = 3.27, SD = 1.03$), $M_D = −0.39, SE = 0.14, p = 0.005, 95\% CI [−0.666, −0.122]$, and marginally significantly lower compared to low power ($M = 3.13, SD = 0.99$), $M_D = −0.30, SE = 0.15, p = 0.055, 95\% CI [−0.007, 0.602]$. Low power and control conditions did not differ, $M_D = −0.10, SE = 0.15, p = 0.52, 95\% CI [−0.196, 0.389]$. For men, benevolent sexism did not differ among conditions, $F(2446) = 0.81, p = 0.48, r^2_p = 0.003$.

![Fig. 3. Gender identification (1-to-6 scale) as a function of power condition and participant gender (Study 3). Error bars represent the standard error of the mean.](image1)

![Fig. 4. Benevolent sexism (1-to-6 scale) as a function of power condition and participant gender (Study 3). Error bars represent the standard error of the mean.](image2)
vary significantly between control (M = 3.14, SD = 0.98), low power (M = 3.37, SD = 0.92), and high power (M = 3.46, SD = 0.87), F(2,446) = 1.96, p = 0.14, \eta^2_p = 0.009.

Looking at it the other way, low power men and women's benevolent sexism scores did not differ (M_L = 0.032, SE = 0.15), p = 0.83, \eta^2_p < 0.001, 95% CI [−0.272, 0.336], and women's scores were significantly higher than men's in the control condition (M_D = 0.35, SE = 0.14), p = 0.012, \eta^2_p = 0.014, 95% CI [0.077, 0.632]. But women's endorsement of benevolent sexism fell below that of men in high power condition (M_D = −0.30, SE = 0.15), p = 0.039, \eta^2_p = 0.010, 95% CI [0.016, 0.595].

12. Discussion

As in Study 1, power had no effect on men's gender identification. Among women, as expected, those in high power reported lower identification than those in the control condition, like in Study 2, whereas control and low power did not differ. As in Study 1, women in Study 3 were overall more identified than men, and this time the main effect reached statistical significance, consistent with past research (e.g., Cameron & Lalonde, 2001; Hurtig & Pichevin, 1990; Lorenzi-Cioldi, 1991). Further, comparisons between men and women confirmed that in both the control and low power conditions, women identified more than men, and it is only in high power that women's identification levels matched those of men, in line with our predictions.

Also consistent with predictions, we found that women (but not men) who felt powerful were significantly less likely to endorse benevolent sexism; power had no effect on hostile sexism for men or women. This finding lends empirical support to the notion that women's endorsement of benevolent sexism stems (at least in part) from their own subordination (Glick & Fiske, 1996; Napier et al., 2010), as women who feel powerful reject this ideology. Such rejection is also consistent with research on system justification theory, which has demonstrated that powerlessness (vs. power) promotes system-serving beliefs (van der Toorn et al., 2015). Indeed, the current study offers a level of nuance to this account, showing that for women, who are chronically low in power in the domain of gender, powerlessness does not seem to amplify perceived legitimacy of the gender system, but high power does reduce it (at least when it comes to benevolent sexism).

13. General discussion

Results from three experiments consistently showed that women who are made to feel powerful report lower levels of gender identification compared to women in other conditions; the same pattern was observed for women's endorsement of benevolent (but not hostile) sexism (Study 3). Men's gender identification was unaffected by the power manipulation. Thus, all three studies offer empirical support for the prediction that feelings of power lower identification among members of disadvantaged (but not advantaged) groups.

A host of research has shown that members of socially devalued groups identify more strongly with their ingroup as compared to members of high status groups (Burn et al., 2000; Cadinu & Galdi, 2012; Cameron & Lalonde, 2001; Hurtig & Pichevin, 1990; Latrofa et al., 2010; Lorenzi-Cioldi, 1991). Study 2 used an all-female sample, but in Studies 1 and 3, which included both male and female participants, we replicated this effect, showing that women reported higher identification than men in the low power (Studies 1 and 3) and control conditions (Study 3). When primed with high power, however, this gender difference was eliminated, such that women's gender identification was as similarly low as men's.

These studies add to a small body of research on the antecedents of group identification, illustrating that, beyond being an individual difference, group identification is contextually dependent. Moreover, our studies broaden the scope of this research by demonstrating that group identification is affected not only by intergroup dynamics (such as the level of discrimination, Jetten et al., 2001, or the potential for mobility, Ellemers et al., 1990), but also by individual factors (namely, one's own sense of power). These studies also demonstrate that power affects identification in a particular direction: Feelings of power hamper identification with a subordinate group, but feelings of powerlessness do not exacerbate it, at least in regards to gender identification. Indeed, no differences in identification between the low power and control conditions emerged in our studies, for either women or men, suggesting that feeling powerful reduces identification with historically low status groups, but not the reverse, i.e., feeling powerless does not seem to increase identification with high status groups.

It is conceivable that perceiving “reverse-racism” (or sexism)—i.e., discrimination toward privileged groups such as “Whites” and “men”—would lead to an increase in identification for members of high status groups, in the same way that it does for low status groups (Jetten et al., 2001). In the absence of perceptions of discrimination, however, identification with dominant groups tends to be lower, presumably because membership in these groups is less salient (Gurin, 1985) and distinctive (Brewer, 1991; Devos & Banaji, 2005), and perhaps even threatening to one's self-image because of the associated privileges (Knowles, Lowery, Chow, & Unzueta, 2014). Thus, members of these groups are more likely to derive a sense of belongingness from their membership in some bespoke group (e.g., occupation; sports team fan), as opposed to their race or gender group. Although we did not find that power reduced gender identification among men, we would expect that both women and men would be less identified with other salient groups when feeling powerful.

Indeed, we would expect that power would reduce group identification for members of any subordinate social groups (e.g., racial, ethnic, or sexual minorities). One especially interesting direction for future researchers is the question of how power might affect identification for people with intersectional identities—i.e., those who belong to multiple, historically disadvantaged groups. We would not have detected such nuance with our predominantly White and heterosexual samples, but it is possible that power reduces identification only with a salient subordinate social category. For some women (Black, queer), their gender group may feel relatively distal compared to their race or sexual orientation group. Future investigations should seek to generalize the effects of power on identification with group memberships other than gender.

We have proposed that the psychological experience of holding power might reduce people's efforts to derive a sense of belongingness and, in the case of members of disadvantaged groups, that this reduced need to belong could lower group identification. Consistent with this, it has been suggested that the desire to attain power may be driven by the need to belong with others (Baumeister & Leary, 1995), and by a desire to be autonomous from the influence of others (Lammers, Stoker, Rink, & Galinsky, 2016). More specifically, feeling powerful reduces individuals' need to belong, while feeling powerless can increase it (Waytz et al., 2015). As the need to belong is a fundamental motivational force (Baumeister & Leary, 1995), research should continue to examine how feeling powerful can quench this need and what downstream consequences may ensue. Here, we have provided additional evidence suggesting that indeed there is a strong connection between an individuals' sense of power and how they see themselves in relation to larger social groups. It would be a worthwhile endeavor for future investigations to experimentally manipulate both feelings of power and the need to belong to explore their compounding effects for members of subordinate groups. For example, it is possible that a strong need to belong might counter the effects of high power on identification, such that when both power and need to belong are high, this could lead to levels of identification comparable to an experimental control condition.

Footnote:

2. We tested whether reduced gender identification would mediate the effect of power on benevolent sexism among women, but it did not, 95% CI [−0.150, 0.003].
The current work dovetails with previous research on gender and power (e.g., Brescoll, 2011). For instance, Haines and Kray (2005) showed that women put in a high (vs. low) power role are more likely to associate the self with masculine stereotypes, such as dominance, at least implicitly, suggesting that being powerful and being feminine represents an incongruity that is intense enough to alter a person’s self-concept. But role incongruity is not likely to be the mechanism by which power affects identification, as group identification and gendered-trait ascriptions are independent constructs with distinct behavioral consequences (Wood & Eagly, 2015). Indeed, if the effect of power on gender identification was due to role incongruity, men should be affected too, as masculine stereotypes are incongruent with powerlessness (Haines & Kray, 2005). Moreover, we assessed implicit self-gender group associations in Study 2, but the episodic power prime did not impact the strength of women’s associations at the implicit level in our study. Nevertheless, the fact that power seems to impact both implicit gendered-trait ascriptions and explicit group identification for women suggests that power could have multiple downstream consequences, affecting both individual and group-related behavior (Wood & Eagly, 2015).

13.1. Contributions to other literatures

Despite the central role that group identification plays in myriad group and intergroup processes, demonstrations of what factors might influence identification are conspicuously rare (a few exceptions notwithstanding; Ellemers et al., 1988; Ellemers et al., 1990; Jetten et al., 2001; Verkuyten, 2005). Instead, researchers tend to treat identification as an individual difference variable that moderates how people will respond to structural barriers (e.g., Spears et al., 1997). Consider, for example, research on “Queen Bees” — i.e., senior women in masculine organizations who serve as obstacles for the advancement of other women in their organization (Derks, van Laar, et al., 2011; Kaiser & Spalding, 2015). This line of research has shown that the threat of being in an environment where one’s gender is explicitly devalued leads to Queen Bee-type behaviors that hamper the progress of other women (e.g., denying the problem of gender discrimination), but this only occurs among women who have low (vs. high) gender identification. Similarly, recent work has extended this line of research to show comparable effects among upwardly mobile low-identified (but not high-identified) Hindustani workers in the Netherlands, who also respond to identity threats by distancing themselves from their disadvantaged ingroup (Derks et al., 2015). Thus, in this view, it is those with relatively weak ties to the group initially who are at risk for perpetuating inequality when confronted with identity threats such as sexism or racial discrimination.

The current research does not contradict this account, but suggests that holding a powerful position, in and of itself, might also be causally related to ingroup derogation in upwardly mobile members of socially devalued groups, through the reduction of group identification. For example, Queen Bees need not have necessarily been fundamentally different from their more egalitarian counterparts at the start, but the experience of attaining power may alter their social identity in a way that makes them more susceptible to ingroup derogation. The effects of power on group identification could be the first step in a dangerous chain of events that, perhaps ironically, links the attainment of power among select members of disadvantaged groups to the maintenance of group-based inequality.

On a more positive note, if feelings of power decrease group identification, as our studies illustrate, this reduction could buffer individual members of subordinate groups against the debilitating effects of stereotype threat (Armenta, 2010; Kang & Chasteen, 2009; Kieler & Sekaquaptewa, 2007; Schmader, 2002). For example, when women experience physiological threat from being exposed to sexism, low (vs. high) identifiers recover more quickly (Eliezer et al., 2010). It is interesting to note that the effects of stereotype threat are reduced (or eliminated) after values- affirmation interventions (e.g., Derks, Scheepers, Van Laar, & Ellemers, 2011; Miyake et al., 2010). Although power and values- affirmation interventions are distinct and have been shown to lead to orthogonal states (Fast & Chen, 2009; see also Kang, Galinsky, Kray, & Shirako, 2015), it is possible that these similar downstream consequences emerge because both affect group identification. Whether or not values affirmations influence identification has not been examined to our knowledge, and it is an interesting question for future research in this domain.

In Study 3, we found support for our prediction that women primed with high power would endorse benevolent sexism to a lower extent than those in low power or a control condition, and we interpret this finding as a reduction in system-justifying tendencies in women who feel powerful (e.g., van der Toorn et al., 2015). However, this finding cannot speak to whether power leads women to perceive lower levels of sexism more generally, or to perceive sexism to be an issue of the past. Other research would suggest that this is the case (e.g., Derks, van Laar et al., 2011; Derks et al., 2015; Kaiser & Spalding, 2015), and it should be noted that reducing endorsement of benevolent sexism constitutes a challenge to the status quo of gender relations (Glick & Fiske, 1996), whereas perceiving sexism as an issue of the past (i.e., modern sexism; Swim, Aikin, Hall, & Hunter, 1995) serves the opposite function, namely justifying unequal gender relations. More research is necessary to better understand how power impacts women’s tendency to challenge or support traditional gender arrangements.

Another contribution of our studies is that they highlight the gains that can be made by disentangling the effects of power versus status on group processes and intergroup relations. Researchers have shown that, on the individual level, power and status can differentially, and sometimes interactively, impact both expected and actual behaviors (Blader & Chen, 2012; Fast, Halevy, & Galinsky, 2012; Fragale, Overbeck, & Neale, 2011; Magee & Galinsky, 2008). For instance, low status/high power individuals were most likely to engage in demeaning behaviors toward others (Fast et al., 2012). In addition, status is positively related to procedural justice, but only when power is low (Blader & Chen, 2012). By examining how individual-level power differentially impacts members of groups with low societal status, our studies lay the groundwork for exploring the interactive effects of status and power at multiple levels of analysis.

For instance, researchers have predicted that upward mobility should affect group identification among the historically disadvantaged, but the (primarily correlational) inquiries into this question have typically yielded null results—e.g., Black Americans with high (vs. low) status occupations and immigrants with (vs. without) nationality in the host country are equally identified (Kulich et al., 2015). We think that the current findings shed light on this inconsistency by suggesting that it is changes in individuals’ own sense of power (but perhaps not changes in status) that impact identification with disadvantaged groups.

Another interesting pursuit for future investigations is whether a different operationalization of power might influence group identification. For example, conceptual power priming, which is thought to activate individuals’ own sense of power (but perhaps not changes in status) that impact identification with disadvantaged groups.

13.2. Concluding remarks

There currently exist numerous initiatives meant to increase the number of women and racial/ethnic minorities in positions of authority.
Our work is motivated, in part, by the question of what might happen to these individuals when they achieve high-power positions. Our studies show a direct link between holding power and lower group identification for women, a phenomenon that would presumably emerge for members of any subordinate group. Group identification is associated with a host of group-promoting attitudes and behaviors, especially for members of low status groups (e.g., Branscombe et al., 1999; Crocker & Major, 1989; Derks, van Laar, et al., 2011; Ellemers, 2001; Major et al., 2002). For instance, it is a necessary (although not always sufficient) precursor for collective action (Becker et al., 2011; Klandermans, 2002). Thus, the finding that high power can reduce identification among members of historically disadvantaged groups could have problematic consequences for group advancement. One serious possibility is that, because of a diminished connection to the ingroup, members of disadvantaged groups who do attain power, and thus who may be uniquely situated to foster structural changes that could benefit the ingroup—people like Carly Fiorina—may be less inclined than the average group member to actually push for those changes (Leach et al., 2008; Wood & Eagly, 2015). At the same time, members of low status groups with relatively low group identification seem to be buffered from the deleterious effects of stigma on performance that plague high identifiers (e.g., Schmader, 2002), which might enable them to better navigate intergroup bias and gain momentum as they accrue power in organizations. Thus, the psychological effects of power may be good for the individual, but less good for the group.

Appendix A. Supplementary materials

Supplementary materials to this article can be found online at http://dx.doi.org/10.1016/j.jesp.2016.06.012.

References

